合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國(guó)保潔 |
美國(guó)強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 神經(jīng)元鈣傳感蛋白(NCS1)的膜結(jié)合性能研究【下】
> 采用殼聚糖-三聚磷酸酯-百里香納米顆粒經(jīng)熱噴墨打印而成的新型活性包裝材料——結(jié)論、致謝!
> 藥膏里乳化劑的作用是什么?
> 納米顆粒對(duì)二元硝酸鹽表面張力和密度的影響
> 討論:長(zhǎng)期用洗潔精洗過的碗筷安全嗎?
> 油/水界面超低界面張力體系設(shè)計(jì)及機(jī)制研究
> 藥物的劑型對(duì)吸收的影響總結(jié)
> 人們已從鱟血淋巴中分離得到多種抗菌肽
> 表面活性劑溶液動(dòng)態(tài)表面張力與印染加工應(yīng)用的關(guān)系
> 水環(huán)境表面張力改變對(duì)超疏水表面水下浸潤(rùn)性的影響
推薦新聞Info
-
> 全自動(dòng)液滴界面張力儀研究聚合物種類和水質(zhì)對(duì)聚合物的界面黏性模量影響
> 衣康酸型反應(yīng)性表面活性劑在新型皮革化學(xué)品中的應(yīng)用研究進(jìn)展
> 溫度、鹽對(duì)辛基酚聚氧乙烯醚磺酸鹽的油-水界面行為的影響(二)
> 溫度、鹽對(duì)辛基酚聚氧乙烯醚磺酸鹽的油-水界面行為的影響(一)
> 電化學(xué)氧化對(duì)液態(tài)金屬表面張力的影響機(jī)制:表面張力可隨電位變化
> 雙季銨基鄰苯二甲酸酯基表面活性劑SHZ16和SHZ14表面張力等性能對(duì)比(二)
> 雙季銨基鄰苯二甲酸酯基表面活性劑SHZ16和SHZ14表面張力等性能對(duì)比(一)
> 蒙藥滴丸劑制備與表面張力有何關(guān)系?
> 磺酸基團(tuán)修飾水滑石LB復(fù)合薄膜自組裝機(jī)理及酸致變色特性(二)
> 磺酸基團(tuán)修飾水滑石LB復(fù)合薄膜自組裝機(jī)理及酸致變色特性(一)
植物油中N-酰基氨基酸表面活性劑的界面活性和聚集行為——結(jié)論、致謝!
來源:Unisense 瀏覽 1041 次 發(fā)布時(shí)間:2021-09-09
結(jié)論
N-?;被岜砻婊钚詣┦且活?綠色"表面活性劑,可替代傳統(tǒng)表面活性劑。本文利用植物油和相應(yīng)的氨基酸直接合成了六種N-?;被岜砻婊钚詣?。它們的結(jié)構(gòu)通過IR和MS確認(rèn)。獲得了表面活性劑的表征參數(shù),包括CMC、γCMC、Γmax、Amin、ΔGads和ΔGmic。有趣的是,聚集行為很大程度上取決于氨基酸殘基和疏水鏈的結(jié)構(gòu)。蓖麻油衍生物尾部羥基的存在傾向于自組裝成球狀囊泡,而頭部帶有羥基的酰基絲氨酸衍生物形成管狀囊泡。
致謝
作者感謝國(guó)家重點(diǎn)研發(fā)計(jì)劃(2017YFB0308701)、國(guó)家自然科學(xué)基金(21676003)、北京市科技項(xiàng)目(D17110500190000)和北京工商大學(xué)青年基金對(duì)本工作的支持學(xué)者基金(PXM2018_014213_000033)。
附錄A.補(bǔ)充資料與本文相關(guān)的補(bǔ)充資料可在網(wǎng)絡(luò)版doi中找到:https://doi.org/10.1016/j.colsurfa.2018.09.042。
References
[1]R.Marchant,I.M.Banat,Biosurfactants:a sustainable replacement for chemical surfactants?Biotechnol.Lett 34(2012)1597–1605.
[2]R.Bordes,K.Holmberg,Amino acid-based surfactants–do they deserve more attention?Adv.Colloid Interface Sci.222(2015)79–91.
[3]L.Pérez,A.Pinazo,R.Pons,M.Infante,Gemini surfactants from natural amino acids,Adv.Colloid Interface Sci.205(2014)134–155.
[4]J.Xia,Protein-Based Surfactants:Synthesis:Physicochemical Properties,and Applications,CRC Press,2001.
[5]M.Husmann,K.Menting,H.Rieckert,H.Ring,J.Weise,W.Zinser,Secondary fatty acid amide derivatives:amino-acid based surfactants for household,industrial and personal care applications,SOFW J.130(2004)22–29.
[6]D.Yea,S.Lee,S.Jo,H.Yu,J.Lim,Preparation of environmentally friendly amino acid‐based anionic surfactants and characterization of their interfacial properties for detergent products formulation,J.Surfact.Deterg.21(2018)541–552.
[7]M.Takehara,Properties and applications of amino acid based surfactants,Colloids Surf.38(1989)149–167.
[8]G.O.Reznik,P.Vishwanath,M.A.Pynn,J.M.Sitnik,J.J.Todd,J.Wu,Y.Jiang,B.G.Keenan,A.B.Castle,R.F.Haskell,Use of sustainable chemistry to produce an acyl amino acid surfactant,Appl.Microbiol.Biotechnol.86(2010)1387–1397.
[9]J.Xia,Y.Xia,I.A.Nnanna,Structure-function relationship of acyl amino acid surfactants:surface activity and antimicrobial properties,J.Agric.Food Chem.43
(1995)867–871.
[10]N.Joondan,S.Jhaumeer-Laulloo,P.Caumul,M.Akerman,Synthesis,physicochemical,and biological activities of novel N‐acyl tyrosine monomeric and Gemini surfactants in single and SDS/CTAB–mixed micellar system,J.Phys.Org.Chem.
(2017)30.
[11]S.Roy,J.Dey,Effect of hydrogen-bonding interactions on the self-assembly formation of sodium N-(11-acrylamidoundecanoyl)-L-serinate,L-asparaginate,and Lglutaminate in aqueous solution,J.Colloid Interface Sci.307(2007)229–234.
[12]E.Jungermann,J.Gerecht,I.Krems,The preparation of long chain N-acylamino acids,J.Am.Chem.Soc.78(1956)172–174.
[13]G.J.Zhang,C.X.Chai,T.T.Tan,B.C.Xu,Y.W.Zhou,H.Q.Liu,L.Zhao,N.Wang,Green synthesis and surface properties of acyl glycine surfactants derived from vegetable oils,Tenside Surfact.Deterg.53(2016)284–290.
[14]R.Wilson,B.Van Schie,D.Howes,Overview of the preparation,use and biological studies on polyglycerol polyricinoleate(PGPR),Food Chem.Toxicol.36(1998)
711–718.
[15]A.J.Kelly,J.Kavanagh,J.Thomas,Castor oil,bath and/or enema for cervical priming and induction of labour,Cochrane Database System.Rev.(2001)CD003099-CD003099.
[16]A.Thomas,Fats and fatty oils,Ullmann's Encyclopedia of Industrial Chemistry,(2000).
[17]B.K.Sharma,A.Adhvaryu,Z.Liu,S.Z.Erhan,Chemical modification of vegetable oils for lubricant applications,J.Am.Oil Chem.Soc.83(2006)129–136.
[18]Y.Xu,H.Liu,B.Xu,G.Zhang,Synthesis,characterization,and surface properties of amide amine oxides based on natural vegetable oil,J.Dispers.Sci.Technol.39
(2018)585–593.
[19]F.M.Menger,L.Shi,S.A.Rizvi,Re-evaluating the Gibbs analysis of surface tension at the air/water interface,J.Am.Chem.Soc.131(2009)10380–10381.
[20]F.M.Menger,L.Shi,S.A.Rizvi,Additional support for a revised Gibbs analysis,Langmuir 26(2009)1588–1589.
[21]J.N.Israelachvili,D.J.Mitchell,B.W.Ninham,Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers,J.Chem.Soc.Faraday Trans.2:Mol.Chem.Phys.72(1976)1525–1568.
[22]J.N.Israelachvili,Intermolecular and Surface Forces(With Applications to Colloidal and Biological Systems),Academic Press,London,Orlando,San Diego,New York,Toronto,Montreal,Sydney,Tokyo,1985.
[23]A.Mohanty,J.Dey,Effect of the headgroup structure on the aggregation behavior and stability of self-assemblies of sodium N-[4-(n-dodecyloxy)benzoyl]-l-aminoacidates in water,Langmuir Acs J.Surf.Colloids 23(2007)1033–1040.
[24]A.Mohanty,J.Dey,Spontaneous formation of vesicles and chiral self-assemblies of sodium N-(4-dodecyloxybenzoyl)-L-valinate in water,Langmuir Acs J.Surf.Colloids 20(2004)8452–8459.
[25]A.Ghosh,J.Dey,Effect of hydrogen bonding on the physicochemical properties and bilayer self-assembly formation of N-(2-hydroxydodecyl)-L-alanine
植物油中N-?;被岜砻婊钚詣┑慕缑婊钚院途奂袨椤⒑?jiǎn)介
植物油中N-?;被岜砻婊钚詣┑慕缑婊钚院途奂袨椤牧虾头椒?/strong>