合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國(guó)保潔 |
美國(guó)強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 氫氣泡在水中的表面張力是多少?
> 如何提高UV墨水性能?
> 神經(jīng)元鈣傳感蛋白(NCS1)的膜結(jié)合性能研究【上】
> 聚合物驅(qū)原油破乳劑的研究及應(yīng)用
> 生物降解過(guò)程中對(duì)于表面活性劑AS、AE的表面活性以及水生生物毒性的性能的關(guān)系——結(jié)果與討論
> 表面與界面物理力學(xué)
> 化學(xué)所等發(fā)展直寫高性能原子級(jí)厚二維半導(dǎo)體薄膜新策略
> 表面張力發(fā)光效果
> 界面張力儀的兩種測(cè)量方法
> 通過(guò)柔性葉片流涂膜的超支化聚合物結(jié)構(gòu)——實(shí)驗(yàn)制作
推薦新聞Info
-
> 全自動(dòng)液滴界面張力儀研究聚合物種類和水質(zhì)對(duì)聚合物的界面黏性模量影響
> 衣康酸型反應(yīng)性表面活性劑在新型皮革化學(xué)品中的應(yīng)用研究進(jìn)展
> 溫度、鹽對(duì)辛基酚聚氧乙烯醚磺酸鹽的油-水界面行為的影響(二)
> 溫度、鹽對(duì)辛基酚聚氧乙烯醚磺酸鹽的油-水界面行為的影響(一)
> 電化學(xué)氧化對(duì)液態(tài)金屬表面張力的影響機(jī)制:表面張力可隨電位變化
> 雙季銨基鄰苯二甲酸酯基表面活性劑SHZ16和SHZ14表面張力等性能對(duì)比(二)
> 雙季銨基鄰苯二甲酸酯基表面活性劑SHZ16和SHZ14表面張力等性能對(duì)比(一)
> 蒙藥滴丸劑制備與表面張力有何關(guān)系?
> 磺酸基團(tuán)修飾水滑石LB復(fù)合薄膜自組裝機(jī)理及酸致變色特性(二)
> 磺酸基團(tuán)修飾水滑石LB復(fù)合薄膜自組裝機(jī)理及酸致變色特性(一)
微凝膠顆粒在氣液界面處吸附動(dòng)力學(xué)及動(dòng)態(tài)方程研究——結(jié)論、參考!
來(lái)源:上海謂載 瀏覽 1128 次 發(fā)布時(shí)間:2021-10-21
五、結(jié)論
PNIPAM 微凝膠很容易吸附到空氣-水界面 由于它們的聚合性質(zhì)。 我們通過(guò)實(shí)驗(yàn) 建立了這種微凝膠的二維狀態(tài)方程 顆粒吸附在空氣和水的界面上。 壓力區(qū) 等溫線即使在平均顆粒間距離遠(yuǎn)大于它們?cè)诒倔w中的流體動(dòng)力學(xué)直徑時(shí)也能提供可測(cè)量的壓力。 這證實(shí)了粒子變形的事實(shí) 基本上在界面上。 使用簡(jiǎn)單的縮放參數(shù) 我們證明粒子的變形是同階的 因?yàn)樵诜浅5偷呢?fù)載下粒子間距離導(dǎo)致 非常小但可測(cè)量的壓力。 這種低負(fù)荷下的壓力間接探測(cè)顆粒的內(nèi)部彈性, 這與內(nèi)部交聯(lián)密度有關(guān)。 實(shí)驗(yàn)性的 EOS 的觀察結(jié)果與提出的標(biāo)度關(guān)系相匹配 格魯特和斯托亞諾夫。 出現(xiàn)的長(zhǎng)度尺度 deff ? 1.25 nm 這種縮放關(guān)系可以看作是有效距離 交聯(lián)之間。 與比例關(guān)系的偏差 在非常高的載荷下可能是由于屈曲 界面層或外圍聚合物鏈段由于壓縮而部分解吸。
使用實(shí)驗(yàn) EOS,我們研究了吸附 這些微凝膠顆粒在空氣-水界面上的動(dòng)力學(xué)。 我們發(fā)現(xiàn)吸附過(guò)程可以清楚地分開 分為兩種制度。 在短時(shí)間內(nèi),吸附過(guò)程是 由粒子從本體擴(kuò)散到 界面。 很長(zhǎng)一段時(shí)間,界面會(huì)充滿粒子 從而為新顆粒吸附到 界面。 這導(dǎo)致 G 的指數(shù)松弛。
致謝 我們要感謝 Vinod Subramaniam 教授讓我們 在他的幫助下使用 Kibron m-trough 和 Aditya Iyer 先生 Kibron m 槽上的實(shí)驗(yàn)。 我們也感謝阿倫博士 Banpurkar 的想法和討論。 這項(xiàng)工作已 基礎(chǔ)研究基金會(huì)的支持 Matter (FOM),由荷蘭科學(xué)研究組織 (NWO) 提供資金支持。
參考
1 B. Brugger and W. Richtering, Langmuir, 2008, 24, 7769– 7777.
2 B. Brugger, B. A. Rosen and W. Richtering, Langmuir, 2008, 24, 12202–12208.
3 M. Destribats, V. Lapeyre, M. Wolfs, E. Sellier, F. LealCalderon, V. Ravaine and V. Schmitt, So Matter, 2011, 7, 7689–7698.
4 B. P. Binks, Curr. Opin. Colloid Interface Sci., 2002, 7, 21–41.
5 L. A. Lyon and A. Fernandez-Nieves, Annu. Rev. Phys. Chem., 2012, 63, 25–43.
6 B. Brugger, J. Vermant and W. Richtering, Phys. Chem. Chem. Phys., 2010, 12, 14573–14578.
7 M. Destribats, V. Lapeyre, E. Sellier, F. Leal-Calderon, V. Ravaine and V. Schmitt, Langmuir, 2012, 28, 3744–3755.
8 K. Geisel, L. Isa and W. Richtering, Langmuir, 2012, 28, 15770–15776.
9 Z. Li, K. Geisel, W. Richtering and T. Ngai, So Matter, 2013, 9, 9939–9946.
10 T. Ngai, S. H. Behrens and H. Auweter, Chem. Commun., 2005, 331–333.
11 Y. Cohin, M. Fisson, K. Jourde, G. Fuller, N. Sanson, L. Talini and C. Monteux, Rheol. Acta, 2013, 52, 445–454.
12 S. L. Kettlewell, A. Schmid, S. Fujii, D. Dupin and S. P. Armes, Langmuir, 2007, 23, 11381–11386.
13 R. D. Groot and S. D. Stoyanov, So Matter, 2010, 6, 1682–1692.
14 S. H¨o, L. Zitzler, T. Hellweg, S. Herminghaus and F. Mugele, Polymer, 2007, 48, 245–254.
15 M. Destribats, M. Eyharts, V. Lapeyre, E. Sellier, I. Varga, V. Ravaine and V. Schmitt, Langmuir, 2014, 30, 1768–1777.
16 M. Horecha, V. Senkovskyy, A. Synytska, M. Stamm, A. I. Chervanyov and A. Kiriy, So Matter, 2010, 6, 5980–5992.
17 R. Acciaro, T. Gilanyi and I. Varga, Langmuir, 2011, 27, 7917– 7925.
18 X. Wu, R. H. Pelton, A. E. Hamielec, D. R. Woods and W. McPhee, Colloid Polym. Sci., 1994, 272, 467–477.
19 S. Zhou, S. Fan, S. C. F. Au-yeung and C. Wu, Polymer, 1995, 36, 1341–1346.
20 I. Varga, T. Gilnyi, R. Mszros, G. Filipcsei and M. Zrnyi, J. Phys. Chem. B, 2001, 105, 9071–9076.
21 R. de Ruiter, R. W. Tjerkstra, M. H. G. Duits and F. Mugele, Langmuir, 2011, 27, 8738–8747.
22 M. Garcia-Salinas, M. Romero-Cano and F. de las Nieves, J. Colloid Interface Sci., 2001, 241, 280–285.
23 O. S. Deshmukh, A. Maestro, M. H. G. Duits, D. van den Ende, M. Cohen Stuart and F. Mugele, manuscriptin preparation.
24 W. Richtering, Langmuir, 2012, 28, 17218–17229.
25 A. Burmistrova, M. Richter, M. Eisele, C. zm and R. von Klitzing, Polymers, 2011, 3, 1575–1590.
26 E. H. Purnomo, D. van den Ende, S. A. Vanapalli and F. Mugele, Phys. Rev. Lett., 2008, 101, 238301.
27 Theory and Simulation of Hard-Sphere Fluids and Related Systems, ed. A. Mulero, Springer, Berlin, 2008.
28 A. Mulero, I. Cachadia and J. R. Solana, Mol. Phys., 2009, 107, 1457–1465.
29 D. Henderson, Mol. Phys., 1977, 34, 301–315.
30 C. F¨anger, H. Wack and M. Ulbricht, Macromol. Biosci., 2006, 6, 393–402.
31 S. Sun and P. Wu, J. Mater. Chem., 2011, 21, 4095–4097.
32 C. H. Chang and E. I. Franses, Colloids Surf., A, 1995, 100, 1–45.
33 H. Ritacco, D. Langevin, H. Diamant and D. Andelman, Langmuir, 2011, 27, 1009–1014.
34 A. F. H. Ward and L. Tordai, J. Chem. Phys., 1946, 14, 453– 461.
微凝膠顆粒在氣液界面處吸附動(dòng)力學(xué)及動(dòng)態(tài)方程研究——摘要、簡(jiǎn)介
微凝膠顆粒在氣液界面處吸附動(dòng)力學(xué)及動(dòng)態(tài)方程研究——材料與方法