新聞中心Info
合作客戶/
拜耳公司 |
同濟大學 |
聯(lián)合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關新聞Info
推薦新聞Info
-
> 全自動液滴界面張力儀研究聚合物種類和水質對聚合物的界面黏性模量影響
> 衣康酸型反應性表面活性劑在新型皮革化學品中的應用研究進展
> 溫度、鹽對辛基酚聚氧乙烯醚磺酸鹽的油-水界面行為的影響(二)
> 溫度、鹽對辛基酚聚氧乙烯醚磺酸鹽的油-水界面行為的影響(一)
> 電化學氧化對液態(tài)金屬表面張力的影響機制:表面張力可隨電位變化
> 雙季銨基鄰苯二甲酸酯基表面活性劑SHZ16和SHZ14表面張力等性能對比(二)
> 雙季銨基鄰苯二甲酸酯基表面活性劑SHZ16和SHZ14表面張力等性能對比(一)
> 蒙藥滴丸劑制備與表面張力有何關系?
> 磺酸基團修飾水滑石LB復合薄膜自組裝機理及酸致變色特性(二)
> 磺酸基團修飾水滑石LB復合薄膜自組裝機理及酸致變色特性(一)
可拉伸復合單層電極用于低壓電介質執(zhí)行器——結論、致謝!
來源:上海謂載 瀏覽 1025 次 發(fā)布時間:2021-12-17
4.結論
首次將Langmuir-Schaefer方法用于DEAs電極的制備。將多壁碳納米管和聚(烷基噻吩)結合在一起,在空氣-水界面形成穩(wěn)定的單分子膜,然后使用Langmuir-Schaefer技術將其轉移到PDMS膜上。單層電極由嵌入鉑單層中的互連多壁碳納米管網絡組成,其中鉑賦予機械性能,而多壁碳納米管確保系統(tǒng)的導電性。復合單分子膜可拉伸,導電率高達100%(~20 MΩ/0%應變時,~5 GΩ/在100%應變下)。使用LS方法制作圖案化超薄可拉伸電極,可以制作具有1.4μm厚PDMS介電膜的薄DEA。僅在100V下,該DEA達到4.0%線性應變。與DEAs通常需要的kV驅動電壓相比,這種低工作電壓為DEAs開辟了新的應用領域。我們在這里報告的LS電極是DEA在小于5V時產生全應變的關鍵構件:通過使用LS/LB技術制造彈性體和電極,將有可能制造多層DEA,其中所有層都是一個單分子厚度。這將是DEA技術的最終物理極限。
致謝
我們衷心感謝Jun Shintake博士、Matthias Imboden博士、Alexandre Poulin博士和Samuel Schlater先生的有益評論和討論。這項工作是由歐盟的地平線2020研究和創(chuàng)新計劃在瑪麗SK·OOOWSKA居里補助金協(xié)議,第64 1822-MICACT通過瑞士國家教育、研究和創(chuàng)新秘書處,以及瑞士國家科學基金會授予第200020號165993。
附錄A.補充數據
與本文相關的補充數據可在在線版本中找到,網址為https://doi.org/10.1016/j.snb.2018.01.145.
工具書類
[1]D.Rus,M.T.Tolley,Design,fabrication and control of soft robots,Nature 521(2015)467–475,http://dx.doi.org/10.1038/nature14543.
[2]M.Wehner,R.L.Truby,D.J.Fitzgerald,B.Mosadegh,G.M.Whitesides,J.A.Lewis,R.J.Wood,An integrated design and fabrication strategy for entirely soft,autonomous robots,Nature 536(2016)451–455,http://dx.doi.org/10.1038/nature19100.
[3]L.Maffli,S.Rosset,M.Ghilardi,F.Carpi,H.Shea,Ultrafast all-polymer electrically tunable silicone lenses,Adv.Funct.Mater.25(2015)1656–1665,http://dx.doi.org/10.1002/adfm.201403942.
[4]S.Shian,R.M.Diebold,D.R.Clarke,Tunable lenses using transparent dielectric elastomer actuators,Opt.Express 21(2013)8669–8676,http://dx.doi.org/10.1364/OE.21.008669.
[5]F.Ilievski,A.D.Mazzeo,R.F.Shepherd,X.Chen,G.M.Whitesides,Soft robotics for chemists,Angew.Chem.–Int.Ed.50(2011)1890–1895,http://dx.doi.org/10.1002/anie.201006464.
[6]J.Shintake,S.Rosset,B.Schubert,D.Floreano,H.Shea,Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators,Adv.Mater.28(2016)231–238,http://dx.doi.org/10.1002/adma.201504264.
[7]R.Pelrine,R.Kornbluh,Q.Pei,J.Joseph,High-speed electrically actuated elastomers with strain greater than 100%,Science 287(2000)836–839,http://dx.doi.org/10.1126/science.287.5454.836(New York N.Y.).
[8]C.Keplinger,T.Li,R.Baumgartner,Z.Suo,S.Bauer,Harnessing snap-through instability in soft dielectrics to achieve giant voltage-triggered deformation,Soft Matter 8(2012)285–288,http://dx.doi.org/10.1039/C1SM06736B.
[9]F.B.Madsen,A.E.Daugaard,S.Hvilsted,A.L.Skov,The current state of silicone-based dieletric elastomer transducers,Macromol.Rapid Commun.37(2016)378–413,http://dx.doi.org/10.1002/marc.201500576.
[10]W.Yuan,L.Hu,Z.Yu,T.Lam,J.Biggs,S.M.Ha,D.Xi,B.Chen,M.K.Senesky,G.Grüner,Q.Pei,Fault-tolerant dielectric elastomer actuators using single-walled carbon nanotube electrodes,Adv.Mater.20(2008)621–625,http://dx.doi.org/10.1002/adma.200701018.
[11]R.E.Pelrine,R.D.Kornbluh,J.P.Joseph,Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation,Sensor Actuat.A:Phys.64(1998)77–85,http://dx.doi.org/10.1016/S0924-4247(97)01657-9.
[12]D.McCoul,W.Hu,M.Gao,V.Mehta,Q.Pei,Recent advances in stretchable and transparent electronic materials,Adv.Electron.Mater.2(2016)1500407,http://dx.doi.org/10.1002/aelm.201500407.
[13]S.J.A.Koh,T.Li,J.Zhou,X.Zhao,W.Hong,J.Zhu,Z.Suo,Mechanisms of large actuation strain in dielectric elastomers,J.Polym.Sci.Part B:Polym.Phys.49(2011)504–515,http://dx.doi.org/10.1002/polb.22223.
[14]S.J.Dünki,Y.S.Ko,F.A.Nüesch,D.M.Opris,Self-repairable,high permittivity dielectric elastomers with large actuation strains at low electric fields,Adv.Funct.Mater.25(2015)2467–2475,http://dx.doi.org/10.1002/adfm.201500077.
[15]M.V.Circu,Y.S.Ko,A.C.Gerecke,D.M.Opris,Soft polydimethylsiloxane thin elastomeric films by in situ polymerization to be used as dielectricum in actuators,Macromol.Mater.Eng.299(2014)1126–1133,http://dx.doi.org/10.1002/mame.201300457.
[16]A.Poulin,S.Rosset,H.R.Shea,Printing low-voltage dielectric elastomer actuators,Appl.Phys.Lett.107(2015)244104,http://dx.doi.org/10.1063/1.4937735.
[17]S.Rosset,H.R.Shea,Flexible and stretchable electrodes for dielectric elastomer actuators,Appl.Phys.A:Mater.Sci.Process.110(2013)281–307,http://dx.doi.org/10.1007/s00339-012-7402-8.
[18]S.Rosset,M.Niklaus,P.Dubois,H.R.Shea,Large-stroke dielectric elastomer actuators with ion-implanted electrodes,J.Microelectromech.Syst.18(2009)1300–1308,http://dx.doi.org/10.1109/JMEMS.2009.2031690.
[19]M.Duduta,R.J.Wood,D.R.Clarke,Multilayer dielectric elastomers for fast,programmable actuation without prestretch,Adv.Mater.28(2016)8058–8063,http://dx.doi.org/10.1002/adma.201601842.
[20]C.Keplinger,J.-Y.Sun,C.C.Foo,P.Rothemund,G.M.Whitesides,Z.Suo,Stretchable,transparent,ionic conductors,Science 341(2013)984–987,http://dx.doi.org/10.1126/science.1240228.
[21]B.Chen,Y.Bai,F.Xiang,J.Y.Sun,Y.Mei Chen,H.Wang,J.Zhou,Z.Suo,Stretchable and transparent hydrogels as soft conductors for dielectric elastomer actuators,J.Polym.Sci.Part B:Polym.Phys.52(2014)1055–1060,http://dx.doi.org/10.1002/polb.23529.
[22]O.A.Araromi,S.Rosset,H.R.Shea,High-resolution,large-area fabrication of compliant electrodes via laser ablation for robust,stretchable dielectric elastomer actuators and sensors,ACS Appl.Mater.Interfaces 7(2015)18046–18053,http://dx.doi.org/10.1021/acsami.5b04975.
[23]B.Fasolt,M.Hodgins,G.Rizzello,S.Seelecke,Effect of screen printing parameters on sensor and actuator performance of dielectric elastomer(DE)membranes,Sens.Actuators A:Phys.265(2017)10–19,http://dx.doi.org/10.1016/j.sna.2017.08.028.
[24]A.El Haitami,E.H.G.Backus,S.Cantin,Synthesis at the air–water interface of a two-dimensional semi-interpenetrating network based on poly(dimethylsiloxane)and cellulose acetate butyrate,Langmuir 30(2014)11919–11927,http://dx.doi.org/10.1021/la502514e.
[25]G.L.Gaines,Insoluble Monolayers at Liquid-gas Interfaces,Interscience Publishers,New York,1966(Accessed 3 July 2017)https://searchworks.stanford.edu/view/699189.
[26]A.R.Tao,F.Kim,C.Hess,J.Goldberger,R.He,Y.Sun,Y.Xia,P.Yang,Langmuir-blodgett silver nanowire monolayers for molecular sensing using surface-enhanced raman spectroscopy,Nano Lett.3(2003)1229–1233,http://dx.doi.org/10.1021/nl0344209.
[27]V.Sgobba,G.Giancane,D.Cannoletta,A.Operamolla,O.Hassan Omar,G.M.Farinola,D.M.Guldi,L.Valli,Langmuir-schaefer films for aligned carbon nanotubes functionalized with a conjugate polymer and photoelectrochemical response enhancement,ACS Appl.Mater Interfaces 6(2014)153–158,http://dx.doi.org/10.1021/am403656k.
[28]L.Huang,X.Hu,L.Chi,Monolayer-mediated growth of organic semiconductor films with improved device performance,Langmuir 31(2015)9748–9761,http://dx.doi.org/10.1021/acs.langmuir.5b00349.
[29]J.Matsui,S.Yoshida,T.Mikayama,A.Aoki,T.Miyashita,Fabrication of polymer langmuir-blodgett films containing regioregular poly(3-hexylthiophene)for application to field-effect transistor,Langmuir 21(2005)5343–5348,http://dx.doi.org/10.1021/la046922n.
[30]J.Moulton,P.Smith,Electrical and mechanical properties of oriented poly(3-alkylthiophenes):2.Effect of side-chain length,Polymer 33(1992)2340–2347,http://dx.doi.org/10.1016/0032-3861(92)90525-2.
[31]S.Hénon,J.Meunier,Microscope at the Brewster angle:direct observation of first-order phase transitions in monolayers,Rev.Sci.Instrum.62(1991)936–939,http://dx.doi.org/10.1063/1.1142032.
[32]S.Rosset,O.A.Araromi,S.Schlatter,H.R.Shea,Fabrication process of silicone-based dielectric elastomer actuators,J.Vis.Exp.108(2016)e53423,http://dx.doi.org/10.3791/53423.
[33]I.M.Ward,J.Sweeney,An Introduction to the Mechanical Properties of Solid Polymers,Wiley,2004.
[34]C.Lo,Y.Lee,W.Hsu,Behavior of mixed multi-walled carbon nanotube/P3HT monolayer at the air/water interface,Synth.Met.160(2010)2219–2223,http://dx.doi.org/10.1016/j.synthmet.2010.08.014.